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ABSTRACT 

In this paper the theory of fuzzy logic is mixed with the theory of Markov systems and the abstraction of a 

Markov system with fuzzy states introduced.  The notions such as fuzzy transient, fuzzy recurrent etc., were 

introduced.  The results based on these notions are introduced. 
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I. INTRODUCTION 
Markov chains are a widely known statistical 

model of a number of real physical, natural, and 

social phenomenon.  Examples comprise such as 

biology, medicine [5] economy and also problems 

related to speech recognition [4].  Fuzzy Markov 

chain is a robust system with respect to fuzzy 

transition probabilities which is not the case for the 

classical probabilistic Markov chains.  Fuzzy Markov 

chains have an inherent application in Fuzzy Markov 

algorithms proposed by Zadeh[11].  The theory of 

Markov system offers an effective and powerful tool 

for describing the phenomena since numerous 

applied probability models can be adopted in their 

framework.  Roughly speaking the Markov property 

strand in need of that knowledge of the current state 

of the system capable of furnishing all the 

information relevant to forecasting its future.  A 

Markov system can be used to describe a phenomena 

that evolves over time according to probabilistic 

laws.  Oliniok [6] has given in his article a more 

abstract and about a Markov fuzzy process with a 

transition possibility measure in an abstract state 

space.  Bellman and Zadeh [1] were the first 

considered stochastic system in a fuzzy environment.  

By a fuzzy environment they mean the system has 

fuzzy goals and fuzzy constraints.  A distinct 

approach combining fuzzy reasoning with Markov 

system can be found in [9] where fuzzy inference 

systems are used to estimate transition probabilities.  

Schweitzer[7] investigates the stationary distribution 

and fundamental matrix of an irreducible Markov 

chain as the transition probabilities vary slightly.  

Smith [8] describes the set of stationary probability 

vectors arising when the transition probabilities of an 

n-state Markov chain vary over a specified range. 

Bhattacharyya [2] has introduced the Markov 

decision process with fuzzy states.  Motivated by the 

fuzzy probability we introduce the concepts of fuzzy 

transient and related notions.  We derive results based 

on these concepts. 

In section 2 we briefly state some of the results 

related to dynamic fuzzy sets.  These results will be 

frequently referred to in the subsequent sections. 

In section 3 we introduce the preliminaries 

related to fuzzy markov chain and fuzzy transition 

probabilities.    

 

II. DYNAMIC FUZZY SETS: 
In what follows we denote the notions and 

notations of Dynamic fuzzy sets, introduced by 

Guangyuan wang et. At [3]. 

Let U be a non-empty usual set P(U) denote the 

set of all subsets in U and F(U) denote the set of all 

fuzzy subsets in U.  For AF(U) we define two 

subsets of U as follows. 

Aα={xU; A(x)≥α} for any α[0,1]       (2.1) 

𝐴𝛼 ={xU; A(x)>α} for any α[0,1]       (2.2) 

Where A(x) is the membership function of A. 

 

DEFINITION:2.1 

Let R be the real line and (R,B) be the Borel 

measurable space.  Let Fo(R) denote the set of fuzzy 

subsets A:R[0,1] with the following properties 

(1) {xR; A(x)=1}  

(2) Aα={xR; A(x)≥α} is a bounded closed interval 

in R for each α(0,1] ie  

Aα=[ Aα
-
, Aα

+
]    

  

Where    Aα
-
= inf Aα             (2.3) 

Aα
+
=sup Aα                                                           (2.4) 

AF0(R) is called bounded closed fuzzy number. 

 

MARKOV PROCESS WITH FUZZY STATES 

Let X={x1 x2,….xn} be a given set.  A fuzzy 

pseudopartition or a fuzzy N-partition of X is a 

family of subset of α, denote by A={A1A2….AN} 

with the corresponding membership function 

12….N which satisfies the orthogonality 
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conditions 
𝑟 𝑥𝑖 

= 1𝑁
𝑟=1 for all xix and 0 <

 
𝑟 𝑥𝑖 

< 𝑛𝑁
𝑟=1  for all ArA where n is a positive 

integer. 

Let F={F1F2…FN}be the fuzzy state space, ie the 

set of fuzzy state for the problem.  Fr is a fuzzy set on 

S={1,2,…,M}.  Where S denotes the original non-

fuzzy state space for the system, the element of 

which may or may not be exactly observable.  Let 


Fr

 0 : S → [0,1]denote the membership function of 

the fuzzy state Fr, for r=1,2,…N.  It is assumed that 

{F1F2…FN}defines a pseudo partition of fuzzy set on 

S such that 

 
𝐹𝑟   𝑖 = 1𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑆                                      (2.5)

𝑁

𝑟=1

 

There are K possible alternatives available for each 

state.  It is also assumed that the transition probability 

Pij(k) of the system moving from state i to state j 

under the alternative k is known for all i,jS and for 

all k=1,2,…k.  It is further assumed that the initial 

probability denoted by Q0i of the system being in the 

non fuzzy state i is know, for each iS.  As we shall 

be dealing with the problem on fuzzy state space Fr 

for all FrF. 

 

TRANSITION PROBABILITY FOR FUZZY 

STATES 

Let Xt , Xt
f 
 denote the non fuzzy and fuzzy state 

of the system at time t respectively.  The Transition 

probability of the system moving from one fuzzy 

state to another can be computed as follows. 

PFr Fs =  Prob[ X1
f
 = Fs / X0

f
 = Fr] 

               =    Prob[ X1
f
 = Fs , X0

f
 = Fr]                 (2.6) 

Prob[ X0
f
 = Fr] 

Now using (2.6) we write 

Prob[ X0
f
 = Fr] =  𝜇𝐹𝑟

𝑚
𝑖=1 (i) Pr[X0 = i] 

=  𝜇𝐹𝑟
𝑚
𝑖=1 (i) Q0i          (2.7) 

And using (2.6) – (2.7)  we get 

Pr[ X1
f
 = Fs , X0

f
 = Fr] 

=   Pr[ X1 = j , X0 =  i]𝑚
𝑗 =1

𝑚
𝑖=1  FrFs(i,j) 

=    Pr[ X1 = j , X0 =  i]𝑚
𝑗 =1

𝑚
𝑖=1  Pr[X0 = i] 

Fr(i)Fs(j) 

=     𝑚
𝑗 =1

𝑚
𝑖=1 Pij Q0i Fr(i)Fs(j)       (2.8) 

PFr Fs =      𝑚
𝑗=1

𝑚
𝑖=1 Pij Q0i Fr(i)Fs(j) (2.9) 

 𝑄𝑚
𝑖=1 0i Fr(i) 

 

The above formula reduces to the following when all 

Q0i are equal. 

PFr Fs        =     𝑚
𝑗 =1

𝑚
𝑖=1 Pij  Fr(i) Fs(j)              (2.10) 

 𝑚
𝑖=1  Fr(i) 

Writing 

                     𝑚
𝑖=1 Fr(i) = mFr 

Equation (2.10) further simplifies to  

PFr Fs  =  (mFr)
-1

      𝑚
𝑗 =1

𝑚
𝑖=1 Pij  Fr(i) Fs(j)    (2.11) 

The m-step transition probability for fuzzy states is 

given by 

Pr[ Xn+m
f
 = Fs / Xn

f
 = Fr] = PFr Fs(m)                    (2.12) 

PFr Fs(m) gives the probability that from the fuzzy 

state Fr at the nth trial fuzzy state k is reached at 

(m+n) th trial in m-steps. 

 

THEOREM:2.1 

CHAPMAN – KOLMOGOROV EQUATION 

For Fuzzy states Fr and Fs 

     

𝑝𝐹𝑟𝐹𝑠  
(𝑚+𝑛)

=   𝑝𝐹𝑟𝐹𝑗
(𝑛)

𝑝𝐹𝑗𝐹𝑠
(𝑚 )

𝑟

                                      (2.13) 

 

Proof: 

The one – step transition probabilities 𝑝𝐹𝑟𝐹𝑠
(1)

 are 

denoted by PFrFs   

PFrFs
(2)

 = Prob[ Xn+2
f
 = Fs / Xn

f
 = Fr]      (2.14) 

The fuzzy state Fs can be reached from the fuzzy 

state Fr in two steps through some intermediate fuzzy 

state r.  Consider the fixed value of r. 

Pr[ Xn+2
f
 = Fs / Xn

f
 = Fr]  

=  Pr[ Xn+2
f
 = Fs / Xn+1

f
 = Fj, Xn

f
 = 

Fr ] Pr[Xn+1
f
 = Fj, Xn

f
 = Fr ]   

  =  Pr[ Xn+2
f
 = Fs / Xn+1

f
 = Fj] 

Pr[Xn+1
f
 = Fj, Xn

f
 = Fr ] 

                       PFjFs PFrFj = PFrFj PFjFs 

Since these intermediate fuzzy state r can assume 

values r = 1,2,… we have, 

PFrFs
(2)

 = Pr[ Xn+2
f
 = Fs / Xn

f
 = Fr] 

=  𝑝𝑟𝑟  [ Xn+2
f
 = Fs ,Xn+1

f
 = j| Xn

f
 = Fr ] 

= 𝑝𝐹𝑟𝐹𝑗 𝑝𝐹𝑗𝐹𝑠𝑟     

  (2.15) 

By induction we have 

PFrFs
(m+1)

 = Pr[ Xm+n+1
f
 = Fs / Xn

f
 = Fr] 

               = 𝑝𝑟𝑟 [ Xm+n+1
f
 = Fs / Xn+m

f
 = Fj] Pr[ Xn+m

f
 

= Fj / Xn
f
 = Fr] 

               = 𝑝𝐹𝑟𝐹𝑗 𝑝𝐹𝑗𝐹𝑠𝑟  (𝑚 ) 

Similarly we get 

PFrFs
(m+1)

   = 𝑝𝐹𝑟𝐹𝑗 𝑝𝐹𝑗𝐹𝑠𝑟  (𝑚) 

In general we have 

PFrFs
(m+n)

= 𝑝𝐹𝑟𝐹𝑗
(𝑛)

 
𝑝𝐹𝑗𝐹𝑠

(𝑚 )

 
𝑟                                     (2.16) 

 

III. CLASS PROPERTY 
A class of fuzzy states is a subset of the fuzzy 

state space such that every  fuzzy state of the class 

Communicates with every other and there is no other 

fuzzy state outside the class which communicates 

with all other fuzzy states in the class.  A property 

defined for all fuzzy states of a chain is a class 

property if it possession by one fuzzy state in a class 

implies its possession by all fuzzy states of the same 

class.  One such property is the periodicity of a state. 
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DEFINITION:3.1 

Fuzzy state Fr is a return state if PFrFr
(n)

>0 for 

some n≥1.  The period di of a return to state I is 

defined as the greatest common divisor of all m such 

that PFrFr
(m)

>0, Thus 

di= G.C.D {m;| PFrFr
(m)

|>0 d (0,1]} 

Fuzzy state i is said to be aperiodic if di =1 and 

periodic if di >1.  Clearly state i is aperiodic if 

PFrFr0.  It can be shown that two distinctive fuzzy 

states belonging to the same class have the same 

period. 

Every finite Markov chain contains at last one 

closed set, i.e., the set of all fuzzy states or the fuzzy 

state space.  If the chain does not contain any other 

proper closed subset other than the fuzzy state space, 

then the chain is called irreducible; the transition 

probability matrix of irreducible class is an 

irreducible matrix.  In an irreducible Markov chain 

every fuzzy state can be reached from every other 

fuzzy state. 

 

CLASSIFICATION OF STATES: 

Suppose that a system starts with the fuzzy state 

Fr.  Let fFrFs
(n)

 be the probabilities that it reaches the 

state Fs for the first time at the nth step.  Let PFrFs
(n)

 

be the probability that it reaches state Fs after n 

transitions.  Let Tk be the first passage time to  fuzzy 

state Fs. i.e., 

Tk = min{n≥1, Xn = Fs} 

And { fFrFs
(n)

} be the distribution of Tk given that the 

chain starts at the fuzzy state Fr.  A relation can be 

established between fFrFs
(n) 

and PFrFs
(n)

 as follows.  The 

relation allows fFrFs
(n)

 to be expressed in terms of  

PFrFs
(n)

.  We state the following theorem. 

 

THEOREM:3.1 

Whatever be the state Fr and Fs 

PFrFs
(n)

 =  𝑓𝐹𝑟𝐹𝑠
(𝑟)

 𝑝𝐹𝑠𝐹𝑠
(𝑛−𝑟)

 ;   𝑛 ≥ 1 𝑛
𝑟=0  

With PFrFs
(0)

 = 1 , fFrFs
(0)

=0,  fFrFs
(1)

= PFrFs 

It can also be written as 

PFrFs
(n)

 =  𝑓𝐹𝑟𝐹𝑠
(𝑟)

 𝑝𝐹𝑠𝐹𝑠
(𝑛−𝑟)

+ 𝑓𝐹𝑟𝐹𝑠            
 (𝑛)

;   𝑛 > 1 𝑛
𝑟=0  

 

FIRST PASSAGE TIME DISTRIBUTION 

Let FFrFs denote the probability that starting with 

the fuzzy state Fr the system will ever reach the fuzzy 

state Fs.  Clearly 

FFrFs = 𝑓𝐹𝑟𝐹𝑠
(𝑛)

  ∞
𝑛=1     

           (3.2) 

We have     𝑝𝐹𝑠𝐹𝑠
(𝑛)

≤  𝐹𝐹𝑟𝐹𝑠
 

𝑛≥1
𝑆𝑢𝑝

≤ 

 𝑝𝐹𝑟𝐹𝑠
(𝑚 )

  𝑓𝑜𝑟 𝑎𝑙𝑙  𝑛 ≥ 1  
𝑚≥1         (3.3) 

We need to consider two cases 

  𝐹𝐹𝑟𝐹𝑠
 = 1, 𝑎𝑛𝑑  𝐹𝐹𝑟𝐹𝑠

 < 1 
The mean (first passage) time from fuzzy state Fr to 

fuzzy state Fs is given by 

𝜇𝐹𝑟𝐹𝑠 =   𝑛𝑓𝐹𝑟𝐹𝑠
(𝑛)∞

𝑛=1                                      (3.4) 

More over 

𝜇𝐹𝑟𝐹𝑟 =   𝑛𝑓𝐹𝑟𝐹𝑟
(𝑛)∞

𝑛=1           (3.5) 

Is known as the mean recurrence time for the fuzzy 

state Fr. 

It is appropriate to express  

di= G.C.D {m; PFrFr
(m)

>0} = G.C.D[m; 𝑓𝐹𝑟𝐹𝑠
(𝑛)

> 0] 
 

LEMMA: 

Let {fn} be a sequence of fuzzy functions such 

that fn≥0  𝑓𝑛 = 1and t≥1 be the greatest common 

divisor of those n for which fn>0. 

Let {un} be another sequence such that u0=1, 

un= 𝑓𝑟𝑢𝑛−𝑟 ; (𝑛 ≥ 1)𝑛
𝑟=1 then 

lim
𝑛→∞

(𝑢𝑛𝑡 )𝛼 =
𝑡


 

Where = 𝑛𝑓𝑛
∞
𝑛=1 the limit being zero when =∞ 

and 

lim
𝑁→∞

(𝑈𝑁) = 0 

Whenever N is not divisible by t. 

 

DEFINITION:3.2 

A fuzzy state Fr is said to be fuzzy persistent  

If FFrFr =1 

Ie., if (FFrFr) =  𝛼(𝐹𝐹𝑟𝐹𝑟 )𝛼 = 1𝛼∈(0,1]  

Ie., if 

 𝛼[(𝐹𝐹𝑟𝐹𝑟 ) 𝛼
−, (𝐹𝐹𝑟𝐹𝑟 ) 𝛼

+] = 1

𝛼∈(0,1]

 

Ie 

 𝛼[ 𝐹𝛼  𝐹𝑟𝐹𝑟

−
,  𝐹𝛼  𝐹𝑟𝐹𝑟

+
] = 1

𝛼∈(0,1]

 

 

DEFINITION:3.3 

A fuzzy state Fr is said to be fuzzy transient if  

FFrFr<1 

Ie.,  if (FFrFr) = 𝛼(𝐹𝐹𝑟𝐹𝑟 )𝛼 < 1𝛼∈(0,1]  

Ie., if 

 𝛼[(𝐹𝐹𝑟𝐹𝑟 ) 𝛼
−, (𝐹𝐹𝑟𝐹𝑟 ) 𝛼

+] < 1

𝛼∈(0,1]

 

 

 

Ie 

 𝛼[(𝐹𝛼) 𝐹𝑟𝐹𝑟
− , (𝐹𝛼) 𝐹𝑟𝐹𝑟

+ ] < 1

𝛼∈(0,1]

 

 

DEFINITION:3.4 

A fuzzy persistent state Fr is said to be null 

persistent if FrFr=∞ and said to be non-null persistent 

if FrFr<∞. 

Fuzzy state Fr is null persistent 

If  (FrFr) =  𝛼(𝜇𝐹𝑟𝐹𝑟 )𝛼 = ∞𝛼∈(0,1]  

Ie., if 

 𝛼[(𝜇𝐹𝑟𝐹𝑟 ) 𝛼
−, (𝜇𝐹𝑟𝐹𝑟 ) 𝛼

+] = ∞

𝛼∈(0,1]

 

Ie 
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 𝛼[ 𝜇𝛼  𝐹𝑟𝐹𝑟

−
 ,  𝜇𝛼  𝐹𝑟𝐹𝑟

+
] = ∞

𝛼∈(0,1]

 

If is non-null persistent if 

 [𝛼(𝜇𝛼) 𝐹𝑟𝐹𝑟
−  , (𝜇𝛼) 𝐹𝑟𝐹𝑟

+ ] < ∞

𝛼∈(0,1]

 

THEOREM 3.2 

     Fuzzy state Fr is fuzzy persistent if and only if  

 𝑝𝐹𝑟𝐹𝑠
(𝑛)

=  

∞

𝑛=0

∞                                                            (3.6) 

Proof: 

Let     

𝑝𝐹𝑟𝐹𝑟
 𝑛  𝑠 =  𝑝𝐹𝑟𝐹𝑟

 𝑛 
  𝑠𝑛

∞

𝑛=0

= 1 +  𝑝𝐹𝑟𝐹𝑟
(𝑛)

  𝑠𝑛

∞

𝑛=1

 

And  

𝐹𝐹𝑟𝐹𝑟
 𝑛  𝑠 =  𝑓𝐹𝑟𝐹𝑟

 𝑛 
  𝑠𝑛

∞

𝑛=0

=  𝑓𝐹𝑟𝐹𝑟
(𝑛)

  𝑠𝑛

∞

𝑛=1

 

Be the generating function of the sequences 

{PFrFr
(n)

}and {fFrFr
(n)

} respectively 

We have from          (3.6) 

 𝑝𝐹𝑟𝐹𝑠
(𝑛)

=  

∞

𝑛=0

∞ 𝑝𝐹𝑟𝐹𝑟
 𝑛 

=  𝑓𝐹𝑟𝐹𝑟
(𝑛)

 𝑝𝐹𝑟𝐹𝑟
(𝑛−𝑟)

 

∞

𝑟=0

 

 𝛼(𝑝𝐹𝑟𝐹𝑟
 𝑛 

)𝛼

𝛼∈(0,1]

=   𝛼(𝑓𝐹𝑟𝐹𝑟
 𝑟 

)𝛼𝛼(𝑝𝐹𝑟𝐹𝑟
 𝑛−𝑟 

)𝛼

𝛼∈(0,1]  

 

  

∞

𝑟=0

                         (3.7) 

Multiplying both sides of (3.7) by s
n
 and adding for 

all n≥1 we get 

 

 𝛼(𝑝𝐹𝑟𝐹𝑟
 𝑠 ) 

𝛼∈(0,1]

− 1 =  𝛼(𝐹𝐹𝑟𝐹𝑟
 )𝛼   𝛼(𝑝𝐹𝑟𝐹𝑟

 )𝛼

𝛼∈(0,1]

 

Thus we have 

 𝛼(𝑝𝐹𝑟𝐹𝑟
 𝑠 )𝛼  

𝛼∈(0,1]

=
1

1 −  𝛼(𝐹𝐹𝑟𝐹𝑟
 )𝛼𝛼∈(0,1]

                                         (3.8) 

Assume that Fr is fuzzy persistent which implies that 

 𝛼(𝐹𝐹𝑟𝐹𝑟
 )𝛼 = 1 

𝛼∈(0,1]

 

Using Abels lemma 

lim
𝑠→1

 𝛼(𝐹𝐹𝑟𝐹𝑟
 (𝑠))𝛼 = 1 

𝛼∈(0,1]

 

lim
𝑠→1

 𝛼(𝑃𝐹𝑟𝐹𝑟
 (𝑠))𝛼 → ∞ 

𝛼∈(0,1]

 

Since the coefficients of (PFrFr)α are non-negative. We 

get 

  𝛼(𝑃𝐹𝑟𝐹𝑟
 (𝑠))𝛼 = ∞ 

𝛼∈(0,1]

 

Conversely if  the state j is fuzzy transient then by 

Abels lemma 

lim
𝑠→1

 𝛼(𝐹𝐹𝑟𝐹𝑟
 (𝑠))𝛼 < 1 

𝛼∈(0,1]

 

From (3.8)  

lim
𝑠→1

 𝛼(𝑃𝐹𝑟𝐹𝑟
 (𝑠))𝛼 < ∞ 

𝛼∈(0,1]

 

Since the coefficients  

   𝛼(𝑃𝐹𝑟𝐹𝑟
 (𝑠))𝛼 < ∞ 

𝛼∈(0,1]

∞

𝑛=0

 

 𝑃𝐹𝑟𝐹𝑟
 < ∞ 

 

THEOREM:3.3 

If state j is fuzzy persistent non-null then as 

n∞ 

(i) 𝑃𝐹𝑟𝐹𝑟
 (𝑛𝑡 )

𝑡

𝜇𝐹𝑟𝐹𝑟
when fuzzy state Fr is 

periodic with period t and 

(ii) 𝑃𝐹𝑟𝐹𝑟
 (𝑛)

1

𝜇𝐹𝑟𝐹𝑟
when fuzzy state Fr is 

aperiodic. 

In  case fuzzy state is persistent null then 

𝑃𝐹𝑟𝐹𝑟
 (𝑛)0 as n∞. 

Proof: 

Let fuzzy state Fr be persistent then 

𝜇𝐹𝑟𝐹𝑟
 =  𝑛𝑓𝐹𝑟𝐹𝑟

(𝑛)
𝑛  is defined 

We have PFrFs
(n)

 =  𝑓𝐹𝑟𝐹𝑟
(𝑟)

 𝑝𝐹𝑟𝐹𝑟
(𝑛−𝑟)

 𝑛
𝑟=0  

We put 𝑓𝐹𝑟𝐹𝑟
(𝑛)

for fn, 𝑝𝐹𝑟𝐹𝑟
(𝑛)

for un and 𝜇𝐹𝑟𝐹𝑟
 for  in 

lemma 3.1 

Applying the lemma we get 

𝑃𝐹𝑟𝐹𝑟
 (𝑛𝑡 )

𝑡

𝜇𝐹𝑟𝐹𝑟
 as n∞ 

When state Fr is periodic with period t when fuzzy 

state Fr is aperiodic then 

𝑃𝐹𝑟𝐹𝑟
 (𝑛)

1

𝜇𝐹𝑟𝐹𝑟
 as n∞ 

In case fuzzy state Fr is persistent null 𝜇𝐹𝑟𝐹𝑟
 =  ∞ 

and 𝑃𝐹𝑟𝐹𝑟
 (𝑛) 0 as n∞ 

𝜇𝐹𝑟𝐹𝑟 =  𝛼(𝜇𝐹𝑟𝐹𝑟
 )𝛼   

𝛼∈(0,1]

 

=  𝛼[(𝜇𝐹𝑟𝐹𝑟 ) 𝛼
− (𝜇𝐹𝑟𝐹𝑟 ) 𝛼

+]

𝛼∈(0,1]

 

(𝜇𝐹𝑟𝐹𝑟 ) 𝛼
 = (𝜇𝛼) 𝐹𝑟𝐹𝑟

 =  [ 𝐹𝛼𝑛   𝐹𝑟𝐹𝑟

−
 ,  𝐹𝛼𝑛   𝐹𝑟𝐹𝑟

+
]

∞

𝑛=1

 

Where for any 𝛼 ∈ (0,1] 𝛼𝑛 = (1 −
1

𝑛+1
)𝛼  

(𝜇𝐹𝑟𝐹𝑟 ) 𝛼
−

 = inf(𝜇𝛼) 𝐹𝑟𝐹𝑟
 

 

       = inf [x ∈R; 𝜇𝐹𝑟𝐹𝑟  𝑥 ≥ 𝛼] 

(𝜇𝐹𝑟𝐹𝑟 ) 𝛼
+

 = Sup (𝜇𝛼) 𝐹𝑟𝐹𝑟
 

 

 = Sup [x ∈R; 𝜇𝐹𝑟𝐹𝑟  𝑥 ≥ 𝛼] 

(𝜇𝐹𝑟𝐹𝑟 ) 𝛼
 =  𝑛(𝑓𝐹𝑟𝐹𝑟

(𝑛)
)𝛼

 

𝑛

 

=  𝑛(𝑓𝛼
(𝑛)

)𝐹𝑟𝐹𝑟

 

𝑛
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We put (𝑓𝛼
(𝑛)

)𝐹𝑟𝐹𝑟  𝑓𝑜𝑟 𝑓𝑛, (𝑝𝛼
(𝑛)

)𝐹𝑟𝐹𝑟  for un and 

(
𝛼
 )𝐹𝑟𝐹𝑟  for  in Lemma (3.1) above.  Applying 

Lemma we get, 

(𝑝𝛼
(𝑛𝑡 )

)𝐹𝑟𝐹𝑟
𝑡

(𝛼
 )𝐹𝑟𝐹𝑟

 as n∞. 

When state j is periodic with period t. 

 𝛼(𝑝𝛼
(𝑛𝑡 )

)𝛼∈(0,1] 𝐹𝑟𝐹𝑟


𝑡

 𝛼(𝛼
 )𝛼∈(0,1] 

 

𝐹𝑟𝐹𝑟

 

 

THEOREM:3.4 

If fuzzy state Fs is fuzzy persistent null, then for 

every Fr 

lim
n∞

𝑝𝐹𝑟𝐹𝑠
 𝑛 

 0                                                              3.9  

And if fuzzy state Fs is aperiodic fuzzy persistent 

non-null then 

lim
n∞

𝑝𝐹𝑟𝐹𝑠
 𝑛 

 
𝐹𝐹𝑟𝐹𝑠

𝜇𝐹𝑠𝐹𝑠

                                                   3.10  

Proof: 

PFrFs
(n)

 =  𝑓𝐹𝑟𝐹𝑠
(𝑟)

 𝑝𝐹𝑠𝐹𝑠
(𝑛−𝑟)

  𝑛
𝑟=1  

ie.,  

 𝛼(𝑃𝐹𝑟𝐹𝑠
 (𝑛))𝛼 =   𝛼(𝑓𝐹𝑟𝐹𝑠

 𝑟 
)𝛼𝛼(𝑝𝐹𝑠𝐹𝑠

 𝑛−𝑟 
)𝛼

𝛼∈(0,1]  

 

  

𝑛

𝑟=1
 

𝛼∈(0,1]

 

let n>m then 

(𝑃𝐹𝑟𝐹𝑠
 (𝑛))𝛼 =  (𝑓𝐹𝑟𝐹𝑠

 𝑟 
)𝛼(𝑝𝐹𝑠𝐹𝑠

 𝑛−𝑟 
)𝛼   

𝑚

𝑟=1

+  (𝑓𝐹𝑟𝐹𝑠
 𝑟 

)𝛼 (𝑝𝐹𝑠𝐹𝑠
 𝑛−𝑟 

)𝛼   

𝑛

𝑟=𝑚+1

 

   (𝑓𝐹𝑟𝐹𝑠
 𝑟 

)𝛼(𝑝𝐹𝑠𝐹𝑠
 𝑛−𝑟 

)𝛼   

𝑚

𝑟=1

+  (𝑓𝐹𝑟𝐹𝑠
 𝑟 

)𝛼 (𝑝𝐹𝑠𝐹𝑠
 𝑛−𝑟 

)𝛼   

𝑛

𝑟=𝑚+1

 

Since fuzzy state Fs is fuzzy persistent 

null(𝑝𝐹𝑠𝐹𝑠
 𝑛−𝑟 

)𝛼0 𝑎𝑠 𝑛∞ for each 𝛼. 
Further since 

 (𝑓𝐹𝑟𝐹𝑠
 𝑚 

)𝛼 < ∞  

∞

𝑚=1

 

 (𝑓𝐹𝑟𝐹𝑠
 𝑟 

)𝛼0 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝛼 ∈  0,1  𝑎𝑛𝑑 𝑛, 𝑚∞

   

𝑛

𝑟=𝑚+1

 

Therefore as n∞ 

𝑝𝐹𝑟𝐹𝑠
 𝑛 

 0 

 𝛼(𝑃𝐹𝑟𝐹𝑠
 (𝑛)) 

𝛼∈(0,1]

 0 

Ie.,  

𝑝𝐹𝑟𝐹𝑠
  0 

 

From the equation 

(𝑃𝐹𝑟𝐹𝑠
 (𝑛))𝛼

−  (𝑓𝐹𝑟𝐹𝑠
 𝑟 

)𝛼(𝑝𝐹𝑠𝐹𝑠
 𝑛−𝑟 

)𝛼   

𝑚

𝑟=1

   (𝑓𝐹𝑟𝐹𝑠
 𝑟 

)𝛼   

𝑛

𝑟=𝑚+1

  (3.11) 

Since fuzzy state is aperiodic, fuzzy persistent and 

non-null then by theorem 

(𝑝𝐹𝑠𝐹𝑠
 𝑛−𝑟 

)𝛼
1

(𝜇𝐹𝑟𝐹𝑟 ) 𝛼
  𝑎𝑠 𝑛 → ∞ 

From the equation( 3.11) we get n,m→ ∞ 

(𝑝𝐹𝑠𝐹𝑠
 𝑛−𝑟 

)𝛼
(𝐹𝐹𝑟𝐹𝑠

 )𝛼  

(𝜇𝐹𝑟𝐹𝑟 ) 𝛼
  

 𝛼(𝑃𝐹𝑟𝐹𝑠
 (𝑛))𝛼  

𝛼∈(0,1]


 𝛼𝛼∈(0,1] (𝐹𝐹𝑟𝐹𝑠

 )𝛼  

 𝛼𝛼∈(0,1] (𝜇𝐹𝑟𝐹𝑟 ) 𝛼
  

Therefore, 

𝑝𝐹𝑠𝐹𝑠
 𝑛−𝑟 

 


𝐹𝐹𝑟𝐹𝑠
 

 
 

𝜇𝐹𝑟𝐹𝑟   
 
 

THEOREM: 3.5 

In an irreducible chain all the states are of the 

same type.  They are either all fuzzy transient all 

fuzzy persistent null or all fuzzy persistent non-null.  

All the fuzzy state are aperiodic and in the latter case 

they all have the same period. 

Proof: 

Since the chain is irreducible, every fuzzy state can 

be reached from every other state.  If Fr, Fs are any 

two states then Fr can be reached from Fs and Fs 

from Fr. 

Ie., 𝑝𝐹𝑟𝐹𝑠
(𝑁)

= 𝑎 > 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑁 ≥ 1 

And 𝑝𝐹𝑠𝐹𝑟
(𝑀)

= 𝑏 > 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑀 ≥ 1 

Ie.,  𝛼(𝑃𝐹𝑟𝐹𝑠
 (𝑁))𝛼  𝛼∈(0,1] = 𝑎 > 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑁 ≥ 1 

And  𝛼(𝑝𝐹𝑠𝐹𝑟
 𝑀 

)𝛼
 

 

 𝛼∈(0,1] = 𝑏 > 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑀 ≥ 1 

 𝛼(𝑃𝐹𝑟𝐹𝑠
 (𝑛+𝑚 ))𝛼  = 

𝛼∈(0,1]

 𝛼(𝑃𝐹𝑟𝐹𝑠
 (𝑚+𝑛))𝛼   

𝛼∈(0,1]

 

                                                   

=  𝛼(𝑝𝐹𝑟𝐹𝑘
 𝑚 

)𝛼   

 

𝐹𝑘

𝛼(𝑃𝐹𝑘𝐹𝑠
 (𝑛))𝛼   

                  (𝑃𝐹𝑟𝐹𝑠
 (𝑛+𝑚))𝛼  

=  𝛼(𝑝𝐹𝑟𝐹𝑘
 𝑚 

)𝛼   

 

𝐹𝑘

(𝑃𝐹𝑘𝐹𝑠
 (𝑛))𝛼   

                                                          

≥ (𝑝𝐹𝑟𝐹𝑘
 𝑚 

)𝛼(𝑃𝐹𝑘𝐹𝑠
 (𝑛))𝛼   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝐹𝑘 

Hence 

(𝑃𝐹𝑟𝐹𝑟
 (𝑛+𝑁+𝑀))𝛼  

≥ (𝑃𝐹𝑟𝐹𝑠
 (𝑁))𝛼  (𝑃𝐹𝑠𝐹𝑠

 (𝑛))𝛼  (𝑃𝐹𝑠𝐹𝑟
 (𝑀))𝛼   

 𝛼(𝑃𝐹𝑟𝐹𝑟
 (𝑛+𝑁+𝑀))𝛼  

𝛼∈(0,1]

≥  𝛼(𝑃𝐹𝑟𝐹𝑠
 (𝑁))𝛼  

𝛼∈(0,1]  

 

 𝛼(𝑃𝐹𝑠𝐹𝑠
 (𝑛))𝛼  

𝛼∈(0,1]  

  

 𝛼(𝑃𝐹𝑠𝐹𝑟
 (𝑀))𝛼  

𝛼∈(0,1]  

 

 

 

(𝑃𝐹𝑟𝐹𝑟
 )(𝑛+𝑁+𝑀)

 
≥ (𝑃𝐹𝑟𝐹𝑠

 (𝑁)) (𝑃𝐹𝑠𝐹𝑠
 (𝑛)) (𝑃𝐹𝑠𝐹𝑟

 (𝑀)) 

= 𝑎𝑏𝑃𝐹𝑟𝐹𝑟
 (𝑛)                          (3.12) 

𝑎𝑛𝑑 (𝑃𝐹𝑠𝐹𝑠
 )(𝑛+𝑁+𝑀)

 

≥ (𝑃𝐹𝑠𝐹𝑟
 (𝑁)) (𝑃𝐹𝑟𝐹𝑟

 (𝑛)) (𝑃𝐹𝑟𝐹𝑟
 (𝑀)) 

= 𝑎𝑏𝑃𝐹𝑟𝐹𝑟
 (𝑛)                            (3.13) 

From the above it is clear that 

 𝑝𝐹𝑟𝐹𝑟
 𝑛 

 
   

𝑛 𝑎𝑛𝑑  𝑝𝐹𝑠𝐹𝑠
 𝑛 

 
   

𝑛  converge or diverge 
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together.  Thus the two fuzzy states Fr, Fs are either 

both fuzzy transient or fuzzy persistent. 

     Suppose that Fr is fuzzy persistent null then 

(𝑃𝐹𝑟𝐹𝑟
 (𝑛))𝛼   0 𝑎𝑠 𝑛∞ for each 𝛼 ∈  0,1  from 

(3.12) (𝑃𝐹𝑠𝐹𝑠
 (𝑛))𝛼   0 𝑎𝑠 𝑛∞ for each ∈  0,1  .  

So that Fr is also fuzzy persistent null. 

 Suppose that Fr is persistent non-null and 

has period t then  (𝑃𝐹𝑟𝐹𝑟
 (𝑛))𝛼  > 0 for each 𝛼 ∈  0,1   

whenever n is a multiple of t. 

Now  

(𝑃𝐹𝑟𝐹𝑟
 )(𝑁+𝑀)

 
≥ (𝑃𝐹𝑟𝐹𝑠

 (𝑁))𝛼  
(𝑃𝐹𝑠𝐹𝑠

 (𝑀))𝛼  
 

 𝛼(𝑃𝐹𝑟𝐹𝑟
 (𝑁+𝑀))𝛼  

𝛼∈(0,1]

≥  𝛼(𝑃𝐹𝑟𝐹𝑠
 (𝑁))𝛼  

𝛼∈(0,1]  

 

  
 
 

 𝛼(𝑃𝐹𝑠𝐹𝑟
 (𝑀))𝛼  

𝛼∈(0,1]  

 

 

 

  

 Ie.,  

(𝑃𝐹𝑟𝐹𝑟
 )(𝑁+𝑀)

 
≥ (𝑃𝐹𝑟𝐹𝑠

 (𝑁))  
(𝑃𝐹𝑠𝐹𝑠

 (𝑀)) = 𝑎𝑏 > 0  

So that (N+M) is a multiple of t .  From equations 

(3.12 & 3.13),  

(𝑃𝐹𝑠𝐹𝑠
 )(𝑛+𝑁+𝑀) ≥ 𝑎𝑏(𝑃𝐹𝑟𝐹𝑟

 )(𝑛) > 0 
Thus (n+N+M) is a multiple of t and so t is the period 

of Fs also. 

 

Theorem:3.6 

An irreducible aperiodic Markov chain belongs to 

one of the following two classes. 

(i) Either the states are all fuzzy transient or all nude 

fuzzy recurrent.  In this case  pFrFs
(n) 0 and n 

 ∞ for all fuzzy states Fr and Fs and there 

exists no stationary distribution. 

(ii) Or else all states are positive fuzzy recurrent that 

is 

  

 = lim
n  ∞

𝑝𝐹𝑟𝐹𝑠
(𝑛)

> 0 
𝐹𝑠

 

 

In this case {Fs, Fs = 0,1,2,…} is a stationary 

distribution and there exists no other stationary 

distribution. 

 

Proof: 

We will first prove (ii) 

𝑝𝐹𝑟𝐹𝑠
(𝑛)

=  𝛼(𝑝𝐹𝑟𝐹𝑠
𝑛

𝛼∈(0,1]

)𝛼  

=  𝛼[(𝑝𝐹𝑟𝐹𝑠
𝑛

𝛼∈ 0,1 

) 
−, (𝑝𝐹𝑟𝐹𝑠

𝑛 )+] 

 𝑝𝐹𝑟𝐹𝑠
(𝑛)

≤

𝑀

𝐹𝑠=1

 𝑝𝐹𝑟𝐹𝑠
(𝑛)

= 1

∞

𝐹𝑠=0

     

Let n  ∞ yields 

lim
n  ∞

  𝑝𝐹𝑟𝐹𝑠
(𝑛)

≤

𝑀

𝐹𝑠=1

1 

 lim
n  ∞

 (𝑝𝐹𝑟𝐹𝑠
 𝑛 

) ≤

𝑀

𝐹𝑠=1

1 

 

            
𝐹𝑠

≤ 1            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀.

𝑀

𝐹𝑠=0

 

Which implies that 

   
𝐹𝑠

≤ 1                    

∞

𝐹𝑠=0

 

Now 

  (𝑃FrFs
(n+1) 

)α     =  ( 𝑝𝐹𝑟𝐹𝑘
(𝑛)

∞

𝐹𝑘=0

)𝛼(𝑝𝐹𝑘𝐹𝑠
 )𝛼

  

                           

≥    (𝑝𝐹𝑟𝐹𝑘
(𝑛)

)𝛼  (

𝑀

𝐹𝑘=0

𝑝𝐹𝑘𝐹𝑠
  𝑘  )𝛼          𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀. 

       

  Letting n  ∞ yields 

(  
𝐹𝑠

)𝛼  ≥  (  
𝐹𝑘

)𝛼   (𝑝𝐹𝑘𝐹𝑠
 )𝛼   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀.

            

m

𝐹𝑘=0

 

Implying that 

(  
𝐹𝑠

)𝛼  ≥  (  
𝐹𝑘

)𝛼  ( 𝑝𝐹𝑘𝐹𝑠
 )𝛼 ;              𝐹𝑠

            

∞

𝑘=0

≥ 0 

To show that the above is actually an actually 

equality, suppose that the inequality is strict for some 

Fs.  Then upon adding these inequalities we obtain 

 (  
𝐹𝑠

)𝛼 >    (  
𝐹𝑘

)𝛼  ( 𝑝𝐹𝑘𝐹𝑠
 )𝛼         

            

∞

𝐹𝑘=0

∞

𝐹𝑠=0

  

            

∞

𝐹𝑠=0

 

                            =  (  
𝐹𝑘

)𝛼  (𝑝𝐹𝑘𝐹𝑠
 )𝛼

∞

𝐹𝑘=0

          

            

∞

𝐹𝑘=0

 

     =  (  
𝐹𝑘

)𝛼           
            

∞

𝐹𝑘=0

 

Which is a contradiction. Fk=0 

Therefore   

 (
𝐹𝑠

)𝛼 =  
(

𝐹𝑘
)𝛼(𝑝𝐹𝑘𝐹𝑠

 )𝛼    𝐹𝑠 = 0,1, …       
            

∞

𝐹𝑘=0

 

Putting (𝑝𝐹𝑠
 )𝛼 =

(  𝐹𝑠 )𝛼

         𝐹𝑘
∞
𝐹𝑘 =0

 

We observe that {𝑝𝐹𝑠
 } is a stationary distribution and 

hence at least one stationary distribution exists. 

Now let {𝑝𝐹𝑠
 , 𝐹𝑠 = 0,1,2 …} be any stationary 

distribution  

Then 

                   𝑝𝐹𝑠
 = p[Xn=Fs] 

  =  Pr 𝑋𝑛 = 𝐹𝑠|𝑋0 = 𝐹𝑟 𝑝𝑟 [𝑋0 = 𝐹𝑟]∞
𝐹𝑟   

=  (𝑝𝐹𝑟𝐹𝑠
𝑛 )𝛼( 

 𝑝𝐹𝑟
 )𝛼

∞
𝐹𝑟=0                                     (3.14) 

From (3.14) we note that 
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  (𝑝𝐹𝑠
 )𝛼

≥  (𝑝𝐹𝑟𝐹𝑠
𝑛 )𝛼  (𝑝𝐹𝑟

 )𝛼                              𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀.

𝑀

𝐹𝑟=0

 

Letting n and then M approaches ∞ 𝑦𝑖𝑒𝑙𝑑𝑠 

(𝑝𝐹𝑟
 )𝛼 ≥  

(
𝐹𝑠

)𝛼(𝑝𝐹𝑟
 )𝛼 = (

𝐹𝑠
)𝛼           

            

∞

𝐹𝑟=0

 

 To get the otherway and show that  (𝑝𝐹𝑟
 )𝛼 ≤ (𝐹𝑠)𝛼     

use (3.14) and the fact that   (𝑝𝐹𝑟𝐹𝑠
𝑛 )𝛼 ≤ 1      to 

obtain 

(𝑝𝐹𝑠
 )𝛼 ≤  (𝑝𝐹𝑟𝐹𝑠

𝑛 )𝛼( 𝑝𝐹𝑟
 )𝛼  

𝑀

𝐹𝑟=0

+    (𝑝𝐹𝑟
 )𝛼   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑀

∞

𝐹𝑟=𝑀+1

 

 And letting n→ ∞      gives 

(𝑝𝐹𝑠
 )𝛼 ≤  (Π𝐹𝑠

 )𝛼( 𝑝𝐹𝑟
 )𝛼  +   ( 𝑝𝐹𝑟

 )𝛼  

∞

𝐹𝑟=𝑚+1

∞

𝐹𝑟=0

 

Since    ( 𝑝𝐹𝑟
 )𝛼 = 1∞

𝐹𝑟=0   we obtain 

Upon letting M→ ∞ that 

(𝑝𝐹𝑠
 )𝛼 ≤  (Π𝐹𝑠

 )𝛼( 𝑝𝐹𝑟
 )𝛼

∞

𝐹𝑟=0

=  (Π
𝐹𝑠
 )𝛼                                (3.14) 

If the states are fuzzy transient or null fuzzy recurrent 

and {PFs , Fs=0,1,2….} is a stationary distribution 

then (PFrFs)𝛼  → 0 which is clearly impossible.  Thus 

for case(i) no stationary distribution exists and 

completes the proof. 
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